Inference Protocols for Coreference Resolution
نویسندگان
چکیده
This paper presents Illinois-Coref, a system for coreference resolution that participated in the CoNLL-2011 shared task. We investigate two inference methods, Best-Link and All-Link, along with their corresponding, pairwise and structured, learning protocols. Within these, we provide a flexible architecture for incorporating linguistically-motivated constraints, several of which we developed and integrated. We compare and evaluate the inference approaches and the contribution of constraints, analyze the mistakes of the system, and discuss the challenges of resolving coreference for the OntoNotes-4.0 data set.
منابع مشابه
Corpus based coreference resolution for Farsi text
"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...
متن کاملCorefrence resolution with deep learning in the Persian Labnguage
Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...
متن کاملAdapting Coreference Resolution for Narrative Processing
Domain adaptation is a challenge for supervised NLP systems because of expensive and time-consuming manual annotated resources. We present a novel method to adapt a supervised coreference resolution system trained on newswire to short narrative stories without retraining the system. The idea is to perform inference via an Integer Linear Programming (ILP) formulation with the features of narrati...
متن کاملA Joint Inference Architecture for Global Coreference Clustering with Anaphoricity
We present an architecture for coreference resolution based on joint inference over anaphoricity and coreference, using Markov Logic Networks. Mentions are discriminatively clustered with discourse entities established by an anaphoricity classifier. Our entity-based coreference architecture is realized in a joint inference setting to compensate for erroneous anaphoricity classifications and avo...
متن کاملA Discriminative Latent Variable Model for Clustering of Streaming Data with Application to Coreference Resolution
We present a latent variable structured prediction model, called the Latent Left-linking Model (L3M), for discriminative supervised clustering of items that follow a streaming order. LM admits efficient inference and we present a learning framework for LM that smoothly interpolates between latent structural SVMs and hidden variable CRFs. We present a fast stochastic gradientbased learning techn...
متن کامل